Ammonia Combustion with Near-Zero Pollutant Emissions

Graduate Students
Praveen Kumar, Kyle Redfern

Undergraduate Students
Daniel Diaz

Supervisor: Dr. Terry Meyer

7th Annual NH3 Fuel Conference Sept. 26-28, 2010 Crowne Plaza, Romulus, MI
• Motivation

• Background

• Experimental Setup

• Results

• Conclusions

• Future Work

• References
• Why Ammonia?
• What’s the driving force behind the current research?
 – Carbon emissions, displacing fossil fuels
• Neal Sullivan et. al., 2002; Experimental and Numerical study of NO\textsubscript{x} formation CH4/NH3 mixture in laminar non-premixed flame.

• C. Duynslaegher et. al., 2009; Investigated NO\textsubscript{x} formation mechanisms in NH3 combustion.

• M. Zieba et. al., 2009; FLOX of NH3. Studied the NO\textsubscript{x} chemistry.

• Zhenyu Tian et. al., 2009; Experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames.

• T. Mendiara, P. Glarborg, 2009; Ammonia chemistry in oxy-fuel combustion of methane; Used CHEMKIN modeling.

Very Limited study has been reported on Ammonia Combustion for use in the practical scale combustors/furnaces.
Simulated Oil Heating Furnace

- Heating Capacity up to 40 kW
- Equipped with Thermocouple & Pressure Transducers.
- Custom Built Swirl-plate Stabilizer.
- Easily Movable fuel nozzle.
- Optical diagnostics accessible flame.
- Exhaust section: Chilled water-line & Sampling Locations with a optical accessible window.

- **Key features**: Flexible chamber with or without flame holder and self-sustained heat recovery system.
Experimental Set-Up

Nozzle Positions
1. Position A => 1.0” up
2. Position B => 0.5” up
3. Position C => Reference
Experimental Procedure

- **Fuel Mixtures:** \(\text{H}_2/\text{NH}_3 \) & \(\text{CH}_4/\text{NH}_3 \)

- **Keywords:**
 1. Heat-Rate (KW)
 \[m_{\text{NH}_3} \text{HHV} + m_{\text{H}_2/\text{CH}_4} \text{HHV} \]
 2. E\%NH\(_3\) = fraction of total input energy contributed by ammonia.

- **Flame-Holder effects:**
 1. Creates reverse flow of the exhaust towards the upstream \(\rightarrow \) **better mixing.**
 2. Provide high residence time.

CH\(_4\)/NH\(_3\)/Air, 300C, Equiv Ratio \(\sim 0.95 \), HeatRate \(\sim 10 \text{KW} \) & E\%NH\(_3\) = 15
Experimental Procedure

Study of Natural Gas (CH₄) and Hydrogen (H₂) Replacement by NH₃

Effect of:
- Flame holder
- Preheated Air Temperature
- Equivalence Ratio
- Different Fuel Nozzle Positions

on E%NH₃ and emissions

Emissions Analyzer:
- NO - chem cell
- CO (low) - chem cell
- CO (high) - chem cell
- O₂ - chem cell
- Unburned HC's – NDIR
- CO₂ – NDIR
- Ammonia - NDIR
CH₄/NH₃/Air, 300°C, Q_total ~ 560 slpm, Max E%NH₃, HR ~ 15KW
Equivalence Ratio

$\text{CH}_4/\text{NH}_3/\text{Air}, \text{300C, Q}_\text{total} \sim 560 \text{ slpm, Max E}\%\text{NH}_3, \text{HR} \sim 15\text{KW}$
Results & Discussion

Temperature Effect

\[\text{H}_2/\text{NH}_3/\text{Air}, 300\degree \text{C}, \ Q_{\text{total}} \sim 300 \text{ slpm, Equiv Ratio} \sim 0.95 \]

Fig. 7

w/o FH

![Graph showing NOx (ppm) vs. Preheated Air Temp (C) for different E%NH3 values without fuel injection.](image)

Max E%NH3

- 50
- 55
- 60
- 65
- <75

Fig. 8

w/ FH

![Graph showing NOx (ppm) vs. Preheated Air Temp (C) for different E%NH3 values with fuel injection.](image)

Max E%NH3

- 70
- 70
- 75
- 85
- ~90

H$_2$/NH$_3$/Air, 300\degree \text{C}, Q_{\text{total}} \sim 300 \text{ slpm, Equiv Ratio} \sim 0.95

Fig. 7

H$_2$/NH$_3$/Air, 300\degree \text{C}, Q_{\text{total}} \sim 300 \text{ slpm, Equiv Ratio} \sim 0.95

Fig. 8
Results & Discussion

H₂/NH₃/Air Phi = 0.95 w/ FH

- E%NH₃ = 50
- E%NH₃ = 70
- E%NH₃ = 90

NOₓ (ppm) vs. Preheated Air Temp (°C)
Results & Discussion

H₂/NH₃/Air Phi = 0.95 w/ FH

NH₃ (ppm)

Preheated Air Temp (°C)

E%NH₃ = 50
E%NH₃ = 70
E%NH₃ = 90
Results & Discussions

Equivalence Ratio

H₂/NH₃/Air, 300°C, Q_total ~ 300 slpm, E%NH₃ ~ 50

![Graph showing NOx and NH3 levels with equivalence ratio.](image)
Results & Discussion

H2/NH3/Air, 300C, Q_total ~ 300 slpm, E%NH3 ~ 50, w/ FH

- NOx
- NH3

Equiv Ratio vs NOx (ppm) and NH3 (ppm)
Nozzle Effect

H$_2$/NH$_3$/Air, 300C, Q$_{total}$ ~300 slpm, Equiv Ratio ~ 0.95

Fig. 18

Fig. 19
• For hydrocarbon replacement, difficult to achieve high replacement with near-zero NOx and ammonia. CO can be high near stoichiometric conditions

• Hydrogen addition of 10-30% shows good potential for near-zero emissions of NOx, ammonia, CO, CO₂, and unburned HC’s

• Strategies include flame holder, preheating, nozzle conditions, equivalence ratio
Other Ongoing and Future Work

- Currently evaluating chemical mechanism for NOx formation with CHEMKIN

- Flame speed analysis and emissions measurements to validate CHEMKIN model

- Investigating catalytic decomposition of NH3 using exhaust heat recovery to eliminate need to add hydrogen
Acknowledgements

Funding from Iowa Energy Center

Dr. S.C Kong, Iowa State University

Matthias Veltman, Iowa State University

Other assistance: Hiep Tran, Derek Wissmiller, Miao Li, Iowa State University
Thank You !!!

Questions !!!